Loading...

Operasi Hitung Perkalian Bentuk Aljabar, Contoh Soal dan Pembahasan (Materi SMP)

Advertisement
Perlu kalian ingat bahwa pada perkalian bilangan bulat berlaku sifat distributif perkalian terhadap penjumlahan, yaitu a × (b + c) = (a × b) + (a × c) dan sifat distributif perkalian terhadap pengurangan, yaitu a × (b  c) = (a × b)  (a × c), untuk setiap bilangan bulat a, b, dan c. Sifat ini juga berlaku pada perkalian bentuk aljabar.

1. Perkalian antara konstanta dengan bentuk aljabar
Perkalian suatu bilangan konstanta k dengan bentuk aljabar suku satu dan suku dua dinyatakan sebagai berikut.
k(ax) = kax
k(ax + b) = kax + kb

Contoh:
Jabarkan bentuk aljabar berikut ini, kemudian sederhanakanlah.
a. 4(p + q)
b. 5(ax + by)
c. 3(x  2) + 6(7x + 1)
d. -8(2x  y + 3z)
Penyelesaian:
a. 4(p + q) = 4p + 4q
b. 5(ax + by) = 5ax + 5by
c. 3(x  2) + 6(7x + 1) = 3x  6 + 42x + 6
= 3x + 42x  6 + 6
= (3 + 42)x + 0
= 45x
d. -8(2x  y + 3z) = -16x + 8y  24z
Soal Tantangan
Panjang sisi miring segitiga siku-siku adalah (2x + 1) cm, sedangkan panjang sisi siku-sikunya (3x  2) cm dan (4x  5) cm. Tentukan luas segitiga tersebut.

2. Perkalian antara dua bentuk aljabar
Sebagaimana perkalian suatu konstanta dengan bentuk aljabar, untuk menentukan hasil kali antara dua bentuk aljabar kita dapat memanfaatkan sifat distributif perkalian terhadap penjumlahan dan sifat distributif perkalian terhadap pengurangan.

Selain dengan cara tersebut, untuk menentukan hasil kali antara dua bentuk aljabar, dapat menggunakan cara sebagai berikut. Perhatikan perkalian antara bentuk aljabar suku dua dengan suku dua berikut.
Perkalian antara dua bentuk aljabar
Selain dengan cara skema seperti di atas, untuk mengalikan bentuk aljabar suku dua dengan suku dua dapat digunakan sifat distributif seperti uraian berikut ini.
(ax + b)(cx + d) = ax(cx + d) + b(cx + d)
= ax × cx + ax × d + b × cx + b × d
= acx2 + adx + bcx + bd
= acx2 + (ad + bc)x + bd
Berfikir Kritis
Diskusikan dengan temanmu. Dengan memanfaatkan sifat distributif perkalian terhadap penjumlahan dan sifat distributif perkalian terhadap pengurangan, buktikan perkalian bentuk aljabar berikut.
(ax + b)(ax  b) = a2x2  b2(ax + b)2 = a2x2 + 2abx + b2(ax  b)2 = a2x2  2abx + b2

Adapun pada perkalian bentuk aljabar suku dua dengan suku tiga berlaku sebagai berikut.
Operasi Hitung Perkalian Bentuk Aljabar, Contoh Soal dan Pembahasan
= ax × cx2 + ax × dx + ax × e + b × cx2 + b × dx + b × e
= acx3 + adx2 + aex + bcx2 + bdx + be
= acx3 + (ad + bc)x2 + (ae + bd)x + be
Berfikir Kritis
Coba jabarkan perkalian bentuk aljabar (ax + b)(cx2 + dx + e) dengan menggunakan sifat distributif. Bandingkan hasilnya dengan uraian di atas.

Contoh:
Tentukan hasil perkalian bentuk aljabar berikut dalam bentuk jumlah atau selisih.
1. (2x + 3)(3x  2)
2. (4a + b)(4a + 2b)
3. (2x  1)(x2  2x + 4)
4. (x + 2)(x  2)
Penyelesaian:
1. (2x + 3)(3x  2) kita selesaian dengan dua cara, yaitu sebagai berikut.
 Cara (1) dengan sifat distributif
(2x + 3)(3x  2) = 2x(3x  2) + 3(3x  2)
= 6x2  4x + 9x  6
= 6x2 + 5x  6
 Cara (2) dengan skema
Operasi Hitung Perkalian Bentuk Aljabar, Contoh Soal dan Pembahasan
= 2x × 3x + 2x × (2) + 3 × 3x + 3 × (2)
= 6x2  4x + 9x  6
= 6x2 + 5x  6

2. (4a + b)(4a + 2b) kita selesaikan dengan dua cara, yaitu sebagai berikut.
 Cara (1) dengan sifat distributif
(4a + b)(4a + 2b) = 4a(4a + 2b) + b(4a + 2b)
16a2  8ab + 4ab + 2b2
16a2  4ab + 2b2
 Cara (2) dengan skema
Operasi Hitung Perkalian Bentuk Aljabar, Contoh Soal dan Pembahasan
= (4a) × 4a + (4a) × 2b + b × 4a + b × 2b
16a2  8ab + 4ab + 2b2
16a2  4ab + 2b2

3. (2x  1)(x2  2x + 4) kita selesaikan dengan dua cara, yaitu sebagai berikut.
 Cara (1) dengan sifat distributif
(2x  1) (x2  2x + 4) = 2x(x2  2x + 4)  1(x2  2x + 4)
= 2x3  4x2 + 8x  x2 + 2x  4
= 2x3  4x2  x2 + 8x + 2x  4
= 2x3  5x2 + 10x  4
 Cara (2) dengan skema
Operasi Hitung Perkalian Bentuk Aljabar, Contoh Soal dan Pembahasan
= 2x × x2 + 2x × (2x) + 2x × 4 + (1) × x2 + ( 1) × (2x) + (1) × 4
= 2x3  4x2 + 8x  x2 + 2x  4
= 2x3  4x2  x2 + 8x + 2x  4
= 2x3  5x2 + 10x  4

4. (x + 2)(x  2) kita selesaikan dengan dua cara, yaitu sebagai berikut.
 Cara (1) dengan sifat distributif
(x + 2)(x  2) = x(x  2) + 2(x  2)
= x2  2x + 2x  4
= x2  4
 Cara (2) dengan skema
Operasi Hitung Perkalian Bentuk Aljabar, Contoh Soal dan Pembahasan
= x × x + x × (2) + 2 × x + 2 × (2)
= x2  2x + 2x  4
= x2  4

Menyatakan bentuk perkalian menjadi bentuk penjumlahan seperti tersebut di atas disebut menjabarkan atau menguraikan. Amatilah contoh soal nomor 4 di atas. Apakah kalian sepakat bahwa secara umum bentuk perkalian (x + a)(x  a) = x2  a2? Diskusikan hal tersebut dengan temanmu.

Kumpulan Contoh Soal dan Pembahasan

1. Sederhanakanlah bentuk-bentuk aljabar berikut ini.
a. 2(8a  3b) 4a + 9b
b. 3(4k2l + 3kl2) + 2(9k2 4kl2)
c. 5(3m3  5m2 + m)  2(m3 + 4m2  9m)
Penyelesaian:
a. 2(8a  3b)  4a + 9b = -16a  6b  4a + 9b
= -16a  4a  6b + 9b
= (-16  4)a + (-6 + 9)b
= -20a + 3b

b. 3(4k2l + 3kl2) + 2(9k2 4kl2)
12k2 9kl2  18k2 8kl2
12k2 18k2 9kl2  8kl2
= (-12  18)k2l + (-9  8)kl2
= -30k2 17kl2

c. 5(3m3  5m2 + m)  2(m3 + 4m2  9m)
= 15m3  25m2 + 5m  2m3  8m2 + 18m
= 15m 2m3  25m2  8m+ 5m + 18m
= (15  2)m3 + (-25  8)m2 + (5 + 18)m
= 13m3  33m2 + 23m

2. Nyatakan hasil perkalian bentuk aljabar berikut sebagai jumlah atau selisih.
a. -3(a  2b + 5)
b. xy(x2  4)
c. 1/2(2x + 6)
d. 2(x + 3)
e. -3(2a + 5)
f. p(p2  3)
Penyelesaian:
a. -3(a  2b + 5) = -3a + 6b  15
b. xy(x2  4) = x3 4xy
c. 1/2(2x + 6) = x + 3
d. 2(x + 3) = 2x + 6
e. -3(2a + 5) = -6a  15
f. p(p2  3) = -p3 + 3p

3. Nyatakan bentuk aljabar berikut sebagai perkalian konstanta dengan bentuk aljabar.
a. 5x  15y
b. 2p + q  3r
c. 3x2 + 9xy  18xy2
d. 4p + 8r2
Penyelesaian:
a. 5x  15y
konstanta-konstantanya adalah 5 dan -15. FPB dari 5 dan 15 adalah 5, maka bentuk perkalian konstantanya adalah sebagai berikut.
5x  15y = 5(x  3y)

b. 2p + q  3r
konstanta-konstantanya adalah-2, 1 dan -3. FPB-nya sudah pasti 1, maka bentuk aljabar tersebut tidak dapat dinyatakan sebagai perkalian konstanta.

c. 3x2 + 9xy  18xy2
konstanta-konstantanya adalah 3, 9, dan -18. FPB dari bilangan-bilangan 3, 9 dan 18 adalah 3. Maka bentuk perkalian kontantanya adalah sebagai berikut.
3x2 + 9xy  18xy2 = 3(x2 + 3xy  6xy2)

d. 4p + 8r2
konstanta-konstantanya adalah -4 dan 8. FPB dari 4 dan 8 adalah 4. Dengan demikian, bentuk perkalian konstantanya adalah sebagai berikut.
4p + 8r= 4(-p + 2r2)
Atau bisa juga dituliskan sebagai berikut.
4p + 8r= -4(p  2r2)

4. Tentukan hasil penjabaran bentuk aljabar berikut ini.
a. (x + 2)(x  3)
b. (2x  3)(x + 4)
c. (4k + 1)2
d. (3m + 2n)(3m  2n)
e. (3  a)(5 + a)
f. (2 + a)(a2  2a + 1)
Penyelesaian:
a. (x + 2)(x  3) = x(x  3) + 2(x  3)
= x2  3x + 2x  6
= x2  x  6
b. (2x  3)(x + 4) = 2x(x + 4)  3(x + 4)
= 2x2 + 8x  3x  12
= 2x2 + 5x  12

c. (4k + 1)2 = (4k + 1)(4k + 1)
= 4k(4k + 1) + 1(4k + 1)
= 16k2 + 4k + 4k + 1
= 16k2 + 8k + 1

d. (3m + 2n)(3m  2n) = 3m(3m  2n) + 2n(3m  2n)
= 9m2  6mn + 6mn  4n2
= 9m2  4n2

e. (3  a)(5 + a) = 3(5 + a)  a(5 + a)
= 15 + 3a  5a  a2
= 15  2a  a2

f. (2 + a)(a2  2a + 1) = 2(a2  2a + 1) + a(a2  2a + 1)
= 2a2  4a + 2 + a3  2a2 + a
= a3 + 2a2  2a2  4a + a + 2
= a3  3a + 2

Post a Comment

Mohon berkomentar secara bijak dengan bahasa yang sopan dan tidak keluar dari topik permasalahan dalam artikel ini. Dan jangan ikut sertakan link promosi dalam bentuk apapun.
Terimakasih.

emo-but-icon

Home item

Materi Terbaru